Code No.: 14368 N

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) IV-Semester Main Examinations, July/August-2023 Data Structures Using C

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	DC
1.	Define Theta notation with the help of an example.	2	1		PO
2.	Show how you would set up a 2-Dimensional integer array using dynamic memory allocation in C.	2	1	1	1
3.	What is an abstract data type? Define Stack ADT.	2	1	2	1
4.	The following postfix expression with single digit operands is evaluated using a stack:	2	3	2	1 2
	8 4 1 ^ / 2 4 * + 5 2 * -				
	Give the top two elements of the stack after the first * is evaluated.				
5.	List out the applications of Circular Queue.	2	2	3	1
6.	Consider a Queue, supporting the operations enqueue and dequeue. DAT*A*STR***UC***TU*RE***S**	2	2	3	1
	Assume that for the above sequence, each letter (such as D, A etc) corresponds to a enqueue of that letter onto the queue and each asterisk(*) corresponds to a dequeue operation on the queue. Show the sequence of values returned by the dequeue operations.				
7.	Write the steps to delete a node from singly linked list.	2	1	4	1
8.	Illustrate the circular singly linked list representation of the following: 1) Insert an element at the end. 2) Delete a node from the beginning.	2	1	4	1
9.	Define Binary Search Tree and give example.	2			
10.	Find the preorder traversal of the given graph.	2	1	5	1
	F)	2	3	5	2
	\overline{G}				
	$\begin{array}{c} A \\ \end{array} \begin{array}{c} D \\ \end{array} \begin{array}{c} \end{array} $				
	Part P (5 × 8 = 40 M)				
1. a)	Part-B ($5 \times 8 = 40$ Marks) What is the difference between time and space complexity. Also describe asymptotic notations used for describing the complexity?	4	2	1	1

b)	Write a function to insert the element 'x' into an array at kth position.	4	2	1	1
12. a)	Write function to for push() and pop() operations on stacks with appropriate overflow and underflow conditions.	4	2	2	1
b)	Convert the infix expression ($(A+B)*C-(D-E)^{(F+G)}$) to its postfix and prefix notations. Show the steps during conversion.	4	2	2	1
13. a)	Explain Queue ADT?	2	1	3	1
	Write a program to implement stack using two queues q1 and q2.	6	3	3	2
b)	Compare and contrast Linked List and Array.	2	1	4	1
14. a)	Write a menu-based program to perform the following operations on a singly linked list:	6	3	4	2
	i) insertBegin(int element) ii) deleteEvenNodes()	753			
15. a)	Construct Binary Search Tree for the following set of elements:	4	2	5	1
	125, 25, 500, 755, 20, 200, 150, 190	62		-	
b)	Differentiate DFS and BFS techniques in Graphs.	4	2	5	1
16. a)	Write a recursive function to find sum of array of elements.	4	3	1	2
b)	Write the functions to perform push(int element) and printReverse() operations on a growable stack. Growable Stack is the concept of dynamically allocating double the memory to the stack whenever the "stack overflow" condition arises.		3	2	2
17.	Answer any <i>two</i> of the following:				
a)	- 100 Arrays and Queue using Linked Lists.	4	2	3	1
b)	Write a C program to merge two sorted linked list of size n1 and n2 in such a way that the duplicates in two linked list should be present only in the final sorted linked list.	4	4	4	2
	Example:				
	Input: List1: 1->1->4->5->7 List2: 2->4->5->9				
	Output: 1->2->4->5->7->9				
c	and the given graph	4	3	5	1
	1) Write the adjacent matrix. 2) Write the adjacent list.				
	1 2 4 5				

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

3loom's	l axonomy Level, Co, Course outcome,	0
:\	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
	Blooms Taxonomy Level – 3 & 4	40%
iii)	Blooms Taxonomy Eever 5 5	